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The essential feature of the Kawasaki model is the conserved order parameter, 
which places the model in class B of the Halperin, Hoheberg, and Ma classifica- 
tion. We have studied the energy relaxation of this model in one and two dimen- 
sions with the added feature that spin exchange may take place between any 
pair of sites within the system. Our results for the dynamic exponent z are 
indistinguishable from those for class A models, in which the order parameter 
is not conserved. 
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1. I N T R O D U C T I O N  

Halperin et al. (1) and Hohenberg  and Halperin (2) proposed  a classification 
for the rmodynamic  systems near the critical temperature which suggests 
that  the dynamical  critical exponents depend on the conservat ion laws. In 
particular, the Ising model  with Glauber  dynamics in which neither the 
order  parameter  (magnetizat ion) nor  the energy is conserved lies in class A 
(z = 2 + ct/, where c is a constant  of order  unity), while the same model  but 
with Kawasaki  dynamics (nearest-neighbor spin exchange), in which the 
magnet izat ion is conserved, falls into class B ( z - - 4 -  t/). In this paper, we 
consider the effect of allowing spin exchange between any pair of sites 
within the system while maintaining global conservat ion of the magnetiza- 
tion, with a view to testing the role played by global versus local conserva- 
tion laws. 
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In recent work (3) we considered the Ising Hamiltonian 

H =  - J  ~ r~,aj (1) 
(0) 

where ( 0 )  are the nearest neighbor pairs and ai are the usual Ising spin 
variables + 1. We then allowed spin exchange within a local region (larger 
than nearest-neighbor but much less than the size of the system) without 
alteration of the Hamiltonian. This resulted in a simple rescaling of time so 
that the relaxation appeared faster than for the usual Kawasaki dynamics. 
The dynamic exponent was, however, exactly the same, because length 
rescaling maps all models with finite spin exchange range back onto the 
nearest-neighbor Kawasaki fixed point. This is obviously not so when the 
spin exchange range is infinite (i.e., of the order of the size of the system) 
and it is interesting to investigate whether this case flows to the same or to 
another distinct fixed point. The recent work of Tamayo and Klein (4'5) also 
considered this problem. They concluded that this model belongs to a new 
universality class, distinct from both the Glauber (class A) and the 
Kawasaki (class B) dynamic fixed points. In fact, their result is consistent 
with the value z = 2 - t/, which arises from the simple analysis of rescaling 
the characteristic time z by a factor 3 2, where ~ is the correlation length. 
Thus, they find 

~ z 

for a system with conserved magnetization but long-range spin exchange. 
This result is surprising since it suggests that double spin flips with global 
conservation lead to faster relaxation than the single spin flips of Glauber 
dynamics, which has fewer constraints! 

2. M O N T E  CARLO R E N O R M A L I Z A T I O N  G R O U P  

The method used here for determining the dynamic critical exponent 
in two dimensions was introduced by Jan et al. (16) and the theory was 
developed further by Stauffer (7) and others. (8 lo) We consider, via Monte 
Carlo simulation, relaxation of the appropriate thermodynamic quantity 
and of renormalized images embedded in the original Monte Carlo 
configurations. For example, at the critical temperature, we renormalize the 
original system into cells of size b. The magnetization of the renormalized 
system is then given by Mb=g(t/bZ), where g is a scaling function. 
Comparing two such renormalized systems at the time when Mbl  = Mb2 , 
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we find ( t jb~)=(t2/b~).  This technique is very convenient and is 
considerably less demanding of computer time than most alternatives. 

3. RESULTS 

3=1. d = l  

In one dimension we simulate Ising chains of between 20,000 and 
50,000 spins set initially up or down at random. 

At T = T c  ( - 0 ) ,  where it is energetically impossible to form a 
domain of length one, i.e., a single spin within a cluster of spins of the 
opposite sign, exchange was allowed only between spins at domain walls. 
We find z = 2.00 + 0.02, compatible with ref. 4. As expected, this result is 
independent of whether the exchange took place between neighboring 
domain walls or any two domain walls (Fig. la). 

At just above the critical temperature T =  T + ( - 0  +) the time taken 
for domains to merge will be very much longer than the diffusion time for 
a single-spin domain. (11) Consequently, at the start and after each Monte 
Carlo Step, all such single-spin domains were allowed to diffuse to a 
boundary as soon as they were created. This meant that only the domain 
boundaries had to be stored, since exchange involving spins anywhere else 
would necessarily create single-spin domains. It is here that our arguments 
diverge somewhat from those of Tamayo and Klein. (4"5) There are two 
important variants to be considered: (i) nearest-neighbor exchange and (ii) 
exchange between any two spins of opposite orientation. We find that, as 
in ref. 11, case (i) leads to a dynamic exponent z =  3 (Fig. lb), while (ii) is 
identical to the case at T =  0, and z = 2. 

The difference between the result z = 3 and the value z = 5 given by 
Cordery et al. (~3) and Zwerger (14) for the nearest-neighbor exchange is also 
explained by the temperature not being exactly T C. 

3.2. d =  2 

In two dimensions we considered the Ising model at T =  T c with 
magnetization equal to zero. The usual Kawasaki procedure was 
implemented, but with the modification that the spin exchange might occur 
with equal probability between any two sites of the system. The 
Hamiltonian is still defined by Eq. (1). The system was initialized in a 
random state (N0 energy) and then allowed to evolve toward equilibrium. 
The relaxation curve and the curves for the renormalized images are shown 
in Fig. 2. We obtain z=2.23_+0.05, which is not consistent with the 
numerical results z ' =  1.78 _+ 0.04 and z ' =  1.74 _+ 0.11 quoted in Ref. 4. 
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Fig. 1. (a) Relaxation curve for the one-dimensional Kawasaki model with exchange allowed 
between spins at any domain boundaries. The asymptotic slope determines the dynamic 
exponent z, which is 2.00+0.02. (b) Relaxation curve for the one-dimensional Kawasaki 
model with exchange allowed between spins at neighboring domain boundaries. The domain 
length is L and the probability of exchange is 1/L. The asymptotic slope determines the 
dynamic exponent z, which is 3.1 4-0.1. 
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Fig. 2. Relaxation curves for the 2D Kawasaki model with exchange allowed between any 
pair of spins in the system. The system comprises 106 spins and was averaged over ten runs. 
The dynamic exponent is obtained by constructing a replica on semitransparent paper and 
shifting along the time axis until the curves for different values of b coincide. Calculation of 
ln(t/t')/ln(b/b') then leads to a value z = 2.23 _+ 0.06. 

4.  C O N C L U S I O N  

The replacement of the constraint of local conservation of the 
magnetization by a global constraint leads to dynamical properties which 
are distinct from those observed for the nearest-neighbor Kawasaki model. 
The results we have found differ from those reported in ref. 4, where the 
authors considered the relaxation of the total system at equilibrium. Our 
approach, however, is slightly different, in that we consider the behavior of 
renormalized cells which are much smaller than either the length of the 
system or the range of the spin exchange. It is not expected that these cells 
will have a larger dynamic exponent than that measured for the total 
system. 

A recent paper by Bray (12) argues that the analysis of ref. 4 cannot be 
extended to a range in which the dynamical exponent of model B would be 
less than that of model A. Our results for d =  2 are compatible with this 
statement and with z = 2 + ct/ with c ~ 0.7261, (1) the dynamic exponent of 
the 2D Ising model with Glauber dynamics. We find the dynamic exponent 
for our model to be indistinguishable from that measured for model A with 
nonconserved order parameter! 

The case for d =  1 is somewhat ambiguous; the results depend on 
which version of the model is considered. This is strictly because in one 
dimension the critical temperature is zero. The version which is closest in 
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spi r i t  to  the  2 D  s i tua t ion ,  i.e., the  e x c h a n g e  b e tween  a n y  p a i r  of  o p p o s i t e l y  
o r i e n t e d  sp ins  in the la t t ice ,  l eads  to  z = 2, the  same  va lue  as for  the  non -  
c o n s e r v e d  m o d e l  A. 
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